DEPARTMENT OF TRANSPORTATIONDIVISION OF ENGINEERING SERVICES OFFICE ENGINEER, MS 43 1727 30TH STREET P.O. BOX 168041 SACRAMENTO, CA 95816-8041 FAX (916) 227-6214 TTY (916) 227-8454 ** WARNING ** WARNING ** WARNING ** This document is intended for informational purposes only. Users are cautioned that California Department of Transportation (Department) does not assume any liability or responsibility based on these electronic files or for any defective or incomplete copying, exerpting, scanning, faxing or downloading of the contract documents. As always, for the official paper versions of the bidders packages and non-bidder packages, including addenda write to the California Department of Transportation, Plans and Bid Documents, Room 0200, P.O. Box 942874, Sacramento, CA 94272-0001, telephone (916) 654-4490 or fax (916) 654-7028. Office hours are 7:30 a.m. to 4:15 p.m. When ordering bidder or non-bidder packages it is important that you include a telephone number and fax number, P.O. Box and street address so that you can receive addenda. June 8, 2005 01-Hum-101-90.4/92.5 01-314404 ACNH-Q101(097)E Addendum No. 1 Dear Contractor: This addendum is being issued to the contract for construction on State highway in HUMBOLDT COUNTY NEAR ALTON FROM 1.0 KM SOUTH OF VAN DUZEN RIVER BRIDGE TO 0.1 KM NORTH OF DUZEN RIVER OVERFLOW BRIDGE. Submit bids for this work with the understanding and full consideration of this addendum. The revisions declared in this addendum are an essential part of the contract. Bids for this work will be opened on June 14, 2005. This addendum is being issued to revise the Project Plans, the Notice to Contractors and Special Provisions, the Proposal and Contract, and to provide the Information Handout. On Project Plan Sheet 60, in the "QUANTITIES" table, the quantities for the following items are revised as follows: STRUCTURE EXCAVATION (TYPE H) 68 M3 STRUCTURE EXCAVATION (TYPE AH) 175 M3 In the Special Provisions, Section 10-1.41, "PILING," the subsection, "CAST-IN-DRILLED-HOLE CONCRETE PILES," is revised as attached. In the Proposal and Contract, the Engineer's Estimate Items 48 and 49 are revised as attached. Addendum No. 1 Page 2 June 8, 2005 01-Hum-101-90.4/92.5 01-314404 ACNH-Q101(097)E To Proposal and Contract book holders: Replace page 5 of the Engineer's Estimate in the Proposal with the attached revised page 5 of the Engineer's Estimate. The revised Engineer's Estimate is to be used in the bid. Attached is a copy of the Information Handout which consists of the final hydraulic report, final foundation recommendations, and asbestos, lead-based paint and soil survey report. Inquiries or questions in regard to this addendum must be communicated as a bidder inquiry and must be made as noted in the NOTICE TO CONTRACTORS section of the Notice to Contractors and Special Provisions. Indicate receipt of this addendum by filling in the number of this addendum in the space provided on the signature page of the proposal. Submit bids in the Proposal and Contract book you now possess. Holders who have already mailed their book will be contacted to arrange for the return of their book. Inform subcontractors and suppliers as necessary. This office is sending this addendum by UPS overnight mail Proposal and Contract book holders to ensure that each receives it. A copy of this addendum and the modified wage rates are available for the contractor's use on the Internet Site: # http://www.dot.ca.gov/hq/esc/oe/weekly_ads/addendum_page.html If you are not a Proposal and Contract book holder, but request a book to bid on this project, you must comply with the requirements of this letter before submitting your bid. Sincerely, ORIGINAL SIGNED BY REBECCA D. HARNAGEL, Chief Office of Plans, Specifications & Estimates Office Engineer Attachments #### CAST-IN-DRILLED-HOLE CONCRETE PILES Cast-in-drilled-hole concrete piling shall conform to the provisions in Section 49-4, "Cast-In-Place Concrete Piles," of the Standard Specifications and these special provisions. Cast-in-drilled-hole concrete piling (rock socket) shall consist of drilling or coring sockets in bedrock to the depths or lengths specified and filling with reinforced concrete in conformance with the details shown on the plans and these special provisions. Cored holes, if used, shall conform to the provisions of Section 49-4.03, "Drilled Holes," of the Standard Specifications. Driven steel shells are required at the locations shown on the plans. If driven steel shell is not seated on bedrock at the permanent steel shell tip elevation indicated in the pile data table shown on the plans, the Contractor shall extend the cast-in-drilled-hole concrete piling, including bar reinforcing steel and driven steel shell to the elevation of bedrock. The Contractor shall extend the specified tip elevation of the cast-in-drilled-hole concrete piling (rock socket) to maintain the length in bedrock as shown on the plans. The Contractor shall also extend the inspection pipes to 100 mm clear of the bottom of the drilled or cored hole. The provisions of "Welding" of these special provisions shall not apply to temporary steel casings. Cast-in-drilled-hole concrete piles 600 mm in diameter or larger may be constructed by excavation and depositing concrete under slurry. #### Materials Concrete deposited under slurry shall have a nominal penetration equal to or greater than 90 mm. Concrete shall be proportioned to prevent excessive bleed water and segregation. Concrete deposited under slurry shall contain not less than 400 kg of cementitious material per cubic meter. The combined aggregate grading used in concrete for cast-in-drilled-hole concrete piling shall be either the 25-mm maximum grading, the 12.5-mm maximum grading, or the 9.5-mm maximum grading and shall conform to the requirements in Section 90-3 "Aggregate Gradings," of the Standard Specifications. ## **Mineral Slurry** Mineral slurry shall be mixed and thoroughly hydrated in slurry tanks, and slurry shall be sampled from the slurry tanks and tested before placement in the drilled hole. Slurry shall be recirculated or continuously agitated in the drilled hole to maintain the specified properties. Recirculation shall include removal of drill cuttings from the slurry before discharging the slurry back into the drilled hole. When recirculation is used, the slurry shall be sampled and tested at least every 2 hours after beginning its use until tests show that the samples taken from the slurry tank and from near the bottom of the hole have consistent specified properties. Subsequently, slurry shall be sampled at least twice per shift as long as the specified properties remain consistent. Slurry that is not recirculated in the drilled hole shall be sampled and tested at least every 2 hours after beginning its use. The slurry shall be sampled mid-height and near the bottom of the hole. Slurry shall be recirculated when tests show that the samples taken from mid-height and near the bottom of the hole do not have consistent specified properties. Slurry shall also be sampled and tested prior to final cleaning of the bottom of the hole and again just prior to placing concrete. Samples shall be taken from mid-height and near the bottom of the hole. Cleaning of the bottom of the hole and placement of the concrete shall not start until tests show that the samples taken from mid-height and near the bottom of the hole have consistent specified properties. Mineral slurry shall be tested for conformance to the requirements shown in the following table: | MINERAL SLURRY | | | | | |---|---------------------------|---|--|--| | PROPERTY | REQUIREMENT | TEST | | | | Density (kg/m ³) - before placement in the drilled hole - during drilling | 1030* to 1110* | Mud Weight
(Density) | | | | - prior to final cleaning - immediately prior to placing concrete | 1030* to 1200* | API 13B-1
Section 1 | | | | Viscosity
(seconds/liter) | | Marsh Funnel and
Cup | | | | bentonite | 29 to 53 | API 13B-1
Section 2.2 | | | | attapulgite | 29 to 42 | Section 2.2 | | | | рН | 8 to 10.5 | Glass Electrode pH
Meter or pH Paper | | | | Sand Content (percent) - prior to final cleaning - immediately prior to placing concrete | less than or equal to 4.0 | Sand
API 13B-1
Section 5 | | | ^{*}When approved by the Engineer, slurry may be used in salt water, and the allowable densities may be increased up to 32 kg/m^3 . Slurry temperature shall be at least 4°C when tested. Any caked slurry on the sides or bottom of hole shall be removed before placing reinforcement. If concrete is not placed immediately after placing reinforcement, the reinforcement shall be removed and cleaned of slurry, the sides of the drilled hole cleaned of caked slurry, and the reinforcement again placed in the hole for concrete placement. ## **Synthetic Slurry** Synthetic slurries shall be used in conformance with the manufacturer's recommendations and these special provisions. The following synthetic slurries may be used: | PRODUCT | MANUFACTURER | | | |-----------------|--------------------------------|--|--| | SlurryPro CDP | KB Technologies Ltd. | | | | - | 3648 FM 1960 West | | | | | Suite 107 | | | | | Houston, TX 77068 | | | | | (800) 525-5237 | | | | Super Mud | PDS Company | | | | | c/o Champion Equipment Company | | | | | 8140 East Rosecrans Ave. | | | | | Paramount, CA 90723 | | | | | (562) 634-8180 | | | | Shore Pac GCV | CETCO Drilling Products Group | | | | | 1350 West Shure Drive | | | | | Arlington Heights, IL 60004 | | | | | (847) 392-5800 | | | | Novagel Polymer | Geo-Tech Drilling Fluids | | | | | 220 N. Zapata Hwy, Suite 11A | | | | | Laredo, TX 78043 | | | | | (210) 587-4758 | | | Inclusion of a synthetic slurry on the above list may be obtained by meeting the Department's requirements for synthetic slurries. The requirements can be obtained from the Office of Structure Design, P.O. Box 942874, Sacramento, CA 94274-0001 Synthetic slurries listed may not be appropriate for a given site. Synthetic slurries shall not be used in holes drilled in primarily soft or very soft cohesive soils as determined by the Engineer. A manufacturer's representative, as approved by the Engineer, shall provide technical assistance for the use of their product, shall be at the site prior to introduction of the synthetic slurry into a drilled hole, and shall remain at the site until released by the Engineer. Synthetic slurries shall be sampled and tested at both mid-height and near the bottom of the drilled hole. Samples shall be taken and tested during drilling as necessary to verify the control of the properties of the slurry. Samples shall be taken and tested when drilling is complete, but prior to final cleaning of the bottom of the hole. When samples are in conformance with the requirements shown in the following tables for each slurry product, the bottom of the hole shall be cleaned and any loose or settled material removed. Samples shall be obtained and tested after final cleaning and immediately prior to placing concrete. SlurryPro CDP synthetic slurries shall be tested for conformance to the requirements shown in the following table: | SLURRYPRO CDP | | | | | |--|-----------------------------|---|--|--| | KB Technologies Ltd. | | | | | | PROPERTY | TEST | | | | | Density (kg/m ³) | | Mud Weight | | | | - during drilling | less than or equal to 1075* | (Density)
API 13B-1 | | | | | | Section 1 | | | | - prior to final cleaning | less than or equal to | | | | | - just prior to | 1025* | | | | | placing concrete | | | | | | Viscosity (seconds/liter) | | | | | | - during drilling | 53 to 127 | Marsh Funnel and
Cup
API 13B-1
Section 2.2 | | | | -prior to final
cleaning
- just prior to
placing concrete | less than or equal to 74 | | | | | рН | 6 to 11.5 | Glass Electrode pH
Meter or pH Paper | | | | Sand Content (percent) - prior to final cleaning | less than or equal to 0.5 | Sand
API 13B-1
Section 5 | | | | - just prior to placing concrete | | | | | ^{*}When approved by the Engineer, slurry may be used in salt water, and the allowable densities may be increased up to 32 kg/m³. Super Mud synthetic slurries shall be tested for conformance to the requirements shown in the following table: | SUPER MUD | | | | | |---|-----------------------------|---|--|--| | PDS Company | | | | | | PROPERTY | REQUIREMENT | TEST | | | | Density (kg/m³) - prior to final cleaning - just prior to placing concrete | less than or equal to 1025* | Mud Weight
(Density)
API 13B-1
Section 1 | | | | Viscosity (seconds/liter) - during drilling | 34 to 64 | Marsh Funnel and
Cup | | | | - prior to final cleaning - just prior to placing concrete | less than or equal to 64 | API 13B-1
Section 2.2 | | | | рН | 8 to 10.0 | Glass Electrode pH
Meter or pH Paper | | | | Sand Content (percent) - prior to final cleaning -just prior to placing concrete | less than or equal to 0.5 | Sand
API 13B-1
Section 5 | | | ^{*}When approved by the Engineer, slurry may be used in salt water, and the allowable densities may be increased up to 32 kg/m^3 . Shore Pac GCV synthetic slurries shall be tested for conformance to the requirements shown in the following table: | Shore Pac GCV | | | | | | | |---|-----------------------------------|---|--|--|--|--| | CETCO Drilling Products Group | | | | | | | | PROPERTY REQUIREMENT TEST | | | | | | | | Density (kg/m³) - prior to final cleaning - just prior to placing concrete | less than or equal to 1025* | Mud Weight
(Density)
API 13B-1
Section 1 | | | | | | Viscosity (seconds/liter) - during drilling - prior to final cleaning - just prior to | 35 to 78 less than or equal to 60 | Marsh Funnel and
Cup
API 13B-1
Section 2.2 | | | | | | placing concrete | | | | | | | | рН | 8.0 to 11.0 | Glass Electrode pH
Meter or pH Paper | | | | | | Sand Content (percent) - prior to final cleaning -just prior to placing concrete | less than or equal to 0.5 | Sand
API 13B-1
Section 5 | | | | | ^{*}When approved by the Engineer, slurry may be used in salt water, and the allowable densities may be increased up to 32 kg/m^3 . Novagel Polymer synthetic slurries shall be tested for conformance to the requirements shown in the following table: | NOVAGEL POLYMER
Geo-Tech Drilling Fluids | | | | | | |---|-----------------------------|---|--|--|--| | PROPERTY REQUIREMENT TEST | | | | | | | Density (kg/m ³) - during drilling | less than or equal to 1075* | Mud Weight
(Density)
API 13B-1
Section 1 | | | | | - prior to final cleaning - just prior to placing concrete | less than or equal to 1025* | | | | | | Viscosity (seconds/liter) | | | | | | | - during drilling | 48 to 110 | Marsh Funnel and
Cup
API 13B-1
Section 2.2 | | | | | - prior to final cleaning - just prior to placing concrete | less than or equal to 110 | 3.000 | | | | | рН | 6.0 to 11.5 | Glass Electrode pH
Meter or pH Paper | | | | | Sand Content (percent) - prior to final cleaning -just prior to placing concrete | less than or equal to 0.5 | Sand
API 13B-1
Section 5 | | | | ^{*}When approved by the Engineer, slurry may be used in salt water, and the allowable densities may be increased up to 32 kg/m^3 . ## Water Slurry At the option of the Contractor, water may be used as slurry when casing is used for the entire length of the drilled hole. Water slurry shall be tested for conformance to the requirements shown in the following table: | WATER SLURRY | | | | | |---|---------------------------|---|--|--| | PROPERTY | REQUIREMENT | TEST | | | | Density (kg/m³) - prior to final cleaning - just prior to placing concrete | 1017 * | Mud Weight
(Density)
API 13B-1
Section 1 | | | | Sand Content (percent) - prior to final cleaning -just prior to placing concrete | less than or equal to 0.5 | Sand
API 13B-1
Section 5 | | | ^{*}When approved by the Engineer, salt water slurry may be used, and the allowable densities may be increased up to 32 kg/m^3 . ## Construction The Contractor shall submit a placing plan to the Engineer for approval prior to producing the test batch for cast-indrilled-hole concrete piling and at least 10 working days prior to constructing piling. The plan shall include complete descriptions, details, and supporting calculations as listed below: ## A. Requirements for all cast-in-drilled hole concrete piling: - 1. Concrete mix design, certified test data, and trial batch reports. - 2. Drilling or coring methods and equipment. - 3. Proposed method for casing installation and removal when necessary. - 4. Plan view drawing of pile showing reinforcement and inspection pipes, if required. - 5. Methods for placing, positioning, and supporting bar reinforcement. - 6. Methods and equipment for accurately determining the depth of concrete and actual and theoretical volume placed, including effects on volume of concrete when any casings are withdrawn. - 7. Methods and equipment for verifying that the bottom of the drilled hole is clean prior to placing concrete. - 8. Methods and equipment for preventing upward movement of reinforcement, including the Contractor's means of detecting and measuring upward movement during concrete placement operations. ## B. Additional requirements when concrete is placed under slurry: - 1. Concrete batching, delivery, and placing systems, including time schedules and capacities therefor. Time schedules shall include the time required for each concrete placing operation at each pile. - Concrete placing rate calculations. When requested by the Engineer, calculations shall be based on the initial pump pressures or static head on the concrete and losses throughout the placing system, including anticipated head of slurry and concrete to be displaced. - 3. Suppliers' test reports on the physical and chemical properties of the slurry and any proposed slurry chemical additives, including Material Safety Data Sheet. - 4. Slurry testing equipment and procedures. - 5. Methods of removal and disposal of excavation, slurry, and contaminated concrete, including removal rates. - 6. Methods and equipment for slurry agitating, recirculating, and cleaning. In addition to compressive strength requirements, the consistency of the concrete to be deposited under slurry shall be verified before use by producing a test batch. The test batch shall be produced and delivered to the project under conditions and in time periods similar to those expected during the placement of concrete in the piles. Concrete for the test batch shall be placed in an excavated hole or suitable container of adequate size to allow for testing as specified herein. Depositing of test batch concrete under slurry will not be required. In addition to meeting the specified nominal penetration, the test batch shall meet the following requirements: - A. For piles where the time required for each concrete placing operation, as submitted in the placing plan, will be 2 hours or less, the test batch shall demonstrate that the proposed concrete mix design achieves either a penetration of at least 50 mm or a slump of at least 125 mm after twice that time has elapsed. - B. For piles where the time required for each concrete placing operation, as submitted in the placing plan, will be more than 2 hours, the test batch shall demonstrate that the proposed concrete mix design achieves either a penetration of at least 50 mm or a slump of at least 125 mm after that time plus 2 hours has elapsed. The time period shall begin at the start of placement. The concrete shall not be vibrated or agitated during the test period. Penetration tests shall be performed in conformance with the requirements in California Test 533. Slump tests shall be performed in conformance with the requirements in ASTM Designation: C 143. Upon completion of testing, the concrete shall be disposed of in conformance with the provisions in Section 7-1.13, "Disposal of Material Outside the Highway Right of Way," of the Standard Specifications. The concrete deposited under slurry shall be carefully placed in a compact, monolithic mass and by a method that will prevent washing of the concrete. Concrete deposited under slurry need not be vibrated. Placing concrete shall be a continuous operation lasting not more than the time required for each concrete placing operation at each pile, as submitted in the placing plan, unless otherwise approved in writing by the Engineer. The concrete shall be placed with concrete pumps and delivery tube system of adequate number and size to complete the placing of concrete in the time specified. The delivery tube system shall consist of one of the following: - A. A tremie tube or tubes, each of which are at least 250 mm in diameter, fed by one or more concrete pumps. - B. One or more concrete pump tubes, each fed by a single concrete pump. The delivery tube system shall consist of watertight tubes with sufficient rigidity to keep the ends always in the mass of concrete placed. If only one delivery tube is utilized to place the concrete, the tube shall be placed near the center of the drilled hole. Multiple tubes shall be uniformly spaced in the hole. Internal bracing for the steel reinforcing cage shall accommodate the delivery tube system. Tremies shall not be used for piles without space for a 250-mm tube. Spillage of concrete into the slurry during concrete placing operations shall not be allowed. Delivery tubes shall be capped with a watertight cap, or plugged above the slurry level with a good quality, tight fitting, moving plug that will expel the slurry from the tube as the tube is charged with concrete. The cap or plug shall be designed to be released as the tube is charged. The pump discharge or tremie tube shall extend to the bottom of the hole before charging the tube with concrete. After charging the delivery tube system with concrete, the flow of concrete through a tube shall be induced by slightly raising the discharge end. During concrete placement, the tip of the delivery tube shall be maintained as follows to prevent reentry of the slurry into the tube. Until at least 3 m of concrete has been placed, the tip of the delivery tube shall be within 150 mm of the bottom of the drilled hole, and then the embedment of the tip shall be maintained at least 3 m below the top surface of the concrete. Rapid raising or lowering of the delivery tube shall not be permitted. If the seal is lost or the delivery tube becomes plugged and must be removed, the tube shall be withdrawn, the tube cleaned, the tip of the tube capped to prevent entrance of the slurry, and the operation restarted by pushing the capped tube 3 m into the concrete and then reinitiating the flow of concrete. When slurry is used, a fully operational standby concrete pump, adequate to complete the work in the time specified, shall be provided at the site during concrete placement. The slurry level shall be maintained within 300 mm of the top of the drilled hole. A log of concrete placement for each drilled hole shall be maintained by the Contractor when concrete is deposited under slurry. The log shall show the pile location, tip elevation, dates of excavation and concrete placement, total quantity of concrete deposited, length and tip elevation of any casing, and details of any hole stabilization method and materials used. The log shall include a 215 mm x 280 mm sized graph of the concrete placed versus depth of hole filled. The graph shall be plotted continuously throughout placing of concrete. The depth of drilled hole filled shall be plotted vertically with the pile tip oriented at the bottom and the quantity of concrete shall be plotted horizontally. Readings shall be made at least at each 1.5 m of pile depth, and the time of the reading shall be indicated. The graph shall be labeled with the pile location, tip elevation, cutoff elevation, and the dates of excavation and concrete placement. The log shall be delivered to the Engineer within one working day of completion of placing concrete in the pile. After placing reinforcement and prior to placing concrete in the drilled hole, if drill cuttings settle out of the slurry, the bottom of the drilled hole shall be cleaned. The Contractor shall verify that the bottom of the drilled hole is clean. If temporary casing is used, concrete placed under slurry shall be maintained at a level at least 1.5 m above the bottom of the casing. The withdrawal of casings shall not cause contamination of the concrete with slurry. Material resulting from using slurry shall be disposed of in conformance with the provisions in Section 7-1.13, "Disposal of Material Outside the Highway Right of Way," of the Standard Specifications. ## **Acceptance Testing and Mitigation** Vertical inspection pipes for acceptance testing shall be provided in all cast-in-drilled-hole concrete piles that are 600 mm in diameter or larger, except when the holes are dry or when the holes are dewatered without the use of temporary casing to control ground water. Inspection pipes shall be Schedule 40 polyvinyl chloride pipes with a nominal inside diameter of 50 mm. Each inspection pipe shall be capped top and bottom and shall have watertight couplers to provide a clean, dry and unobstructed 50-mm diameter clear opening from 1.0 m above the pile cutoff down to the bottom of the reinforcing cage. If the Contractor drills the hole below the specified tip elevation, the reinforcement and the inspection pipes shall be extended to 75 mm clear of the bottom of the drilled hole. Inspection pipes shall be placed around the pile, inside the outermost spiral or hoop reinforcement, and 75 mm clear of the vertical reinforcement, at a uniform spacing not exceeding 840 mm measured along the circle passing through the centers of inspection pipes. A minimum of 2 inspection pipes per pile shall be used. When the vertical reinforcement is not bundled and each bar is not more than 26 mm in diameter, inspection pipes may be placed 50 mm clear of the vertical reinforcement. The inspection pipes shall be placed to provide the maximum diameter circle that passes through the centers of the inspection pipes while maintaining the clear spacing required herein. The pipes shall be installed in straight alignment, parallel to the main reinforcement, and securely fastened in place to prevent misalignment during installation of the reinforcement and placing of concrete in the hole. The Contractor shall log the location of the inspection pipe couplers with respect to the plane of pile cut off, and these logs shall be delivered to the Engineer upon completion of the placement of concrete in the drilled hole. After placing concrete and before requesting acceptance tests, each inspection pipe shall be tested by the Contractor in the presence of the Engineer by passing a 48.3-mm diameter rigid cylinder 610 mm long through the complete length of pipe. If the 48.3-mm diameter rigid cylinder fails to pass any of the inspection pipes, the Contractor shall attempt to pass a 32.0-mm diameter rigid cylinder 1.375 m long through the complete length of those pipes in the presence of the Engineer. If an inspection pipe fails to pass the 32.0-mm diameter cylinder, the Contractor shall immediately fill all inspection pipes in the pile with water. The Contractor shall replace each inspection pipe that does not pass the 32.0-mm diameter cylinder with a 50.8-mm diameter hole cored through the concrete for the entire length of the pile. Cored holes shall be located as close as possible to the inspection pipes they are replacing and shall be no more than 150 mm inside the reinforcement. Coring shall not damage the pile reinforcement. Cored holes shall be made with a double wall core barrel system utilizing a split tube type inner barrel. Coring with a solid type inner barrel will not be allowed. Coring methods and equipment shall provide intact cores for the entire length of the pile concrete. The coring operation shall be logged by an Engineering Geologist or Civil Engineer licensed in the State of California and experienced in core logging. Coring logs shall include complete descriptions of inclusions and voids encountered during coring, and shall be delivered to the Engineer upon completion. Concrete cores shall be preserved, identified with the exact location the core was recovered from within the pile, and made available for inspection by the Engineer. Acceptance tests of the concrete will be made by the Engineer, without cost to the Contractor. Acceptance tests will evaluate the homogeneity of the placed concrete. Tests will include gamma-gamma logging. Tests may also include crosshole sonic logging and other means of inspection selected by the Engineer. The Contractor shall not conduct operations within 8.0 m of the gamma-gamma logging operations. The Contractor shall separate reinforcing steel as necessary to allow the Engineer access to the inspection pipes to perform gamma-gamma logging or other acceptance testing. After requesting acceptance tests and providing access to the piling, the Contractor shall allow 3 weeks for the Engineer to conduct these tests and make determination of acceptance if the 48.3-mm diameter cylinder passed all inspection pipes, and 4 weeks if only the 32.0-mm diameter cylinder passed all inspection pipes. Should the Engineer fail to complete these tests within the time allowance, and if in the opinion of the Engineer, the Contractor's controlling operation is delayed or interfered with by reason of the delay in inspection, the delay will be considered a right of way delay as specified in Section 8-1.09, "Right of Way Delays," of the Standard Specifications. All inspection pipes and cored holes in a pile shall be dewatered and filled with grout after notification by the Engineer that the pile is acceptable. Placement and removal of water in the inspection pipes shall be at the Contractor's expense. Grout shall conform to the provisions in Section 50-1.09, "Bonding and Grouting," of the Standard Specifications. The inspection pipes and holes shall be filled using grout tubes that extend to the bottom of the pipe or hole or into the grout already placed. If acceptance testing performed by the Engineer determines that a pile does not meet the requirements of the specifications, then that pile will be rejected and all depositing of concrete under slurry or concrete placed using temporary casing for the purpose of controlling groundwater shall be suspended until written changes to the methods of pile construction are approved in writing by the Engineer. The Contractor shall submit to the Engineer for approval a mitigation plan for repair, supplementation, or replacement for each rejected cast-in-drilled-hole concrete pile, and this plan shall conform to the provisions in Section 5-1.02, "Plans and Working Drawings," of the Standard Specifications. Prior to submitting this mitigation plan, the Engineer will hold a repair feasibility meeting with the Contractor to discuss the feasibility of repairing rejected piling. The Engineer will consider the size of the defect, the location of the defect, and the design information and corrosion protection considerations for the pile. This information will be made available to the Contractor, if appropriate, for the development of the mitigation plan. If the Engineer determines that it is not feasible to repair the rejected pile, the Contractor shall not include repair as a means of mitigation and shall proceed with the submittal of a mitigation plan for replacement or supplementation of the rejected pile. If the Engineer determines that a rejected pile does not require mitigation due to structural, geotechnical, or corrosion concerns, the Contractor may elect to 1) repair the pile per the approved mitigation plan, or 2) not repair anomalies found during acceptance testing of that pile. For such unrepaired piles, the Contractor shall pay to the State, \$400 per cubic meter for the portion of the pile affected by the anomalies. The volume, in cubic meters, of the portion of the pile affected by the anomalies, shall be calculated as the area of the cross-section of the pile affected by each anomaly, in square meters, as determined by the Engineer, multiplied by the distance, in meters, from the top of each anomaly to the specified tip of the pile. If the volume calculated for one anomaly overlaps the volume calculated for additional anomalies within the pile, the calculated volume for the overlap shall only be counted once. In no case shall the amount of the payment to the State for any such pile be less than \$400. The Department may deduct the amount from any moneys due, or that may become due the Contractor under the contract. Pile mitigation plans shall include the following: - A. The designation and location of the pile addressed by the mitigation plan. - B. A review of the structural, geotechnical, and corrosion design requirements of the rejected pile. - C. A step by step description of the mitigation work to be performed, including drawings if necessary. - D. An assessment of how the proposed mitigation work will address the structural, geotechnical, and corrosion design requirements of the rejected pile. - E. Methods for preservation or restoration of existing earthen materials. - F. A list of affected facilities, if any, with methods and equipment for protection of these facilities during mitigation. - G. The State assigned contract number, bridge number, full name of the structure as shown on the contract plans, District-County-Route-Kilometer Post, and the Contractor's (and Subcontractor's if applicable) name on each sheet. - H. A list of materials, with quantity estimates, and personnel, with qualifications, to be used to perform the mitigation work. - I. The seal and signature of an engineer who is licensed as a Civil Engineer by the State of California. For rejected piles to be repaired, the Contractor shall submit a pile mitigation plan that contains the following additional information: - A. An assessment of the nature and size of the anomalies in the rejected pile. - B. Provisions for access for additional pile testing if required by the Engineer. For rejected piles to be replaced or supplemented, the Contractor shall submit a pile mitigation plan that contains the following additional information: - A. The proposed location and size of additional piling. - B. Structural details and calculations for any modification to the structure to accommodate the replacement or supplemental piling. All provisions for cast-in-drilled-hole concrete piling shall apply to replacement piling. The Contractor shall allow the Engineer 3 weeks to review the mitigation plan after a complete submittal has been received. Should the Engineer fail to review the complete pile mitigation submittal within the time specified, and if, in the opinion of the Engineer, the Contractor's controlling operation is delayed or interfered with by reason of the delay in reviewing the pile mitigation plan, an extension of time commensurate with the delay in completion of the work thus caused will be granted in conformance with the provisions in Section 8-1.09, "Right of Way Delays," of the Standard Specifications. When repairs are performed, the Contractor shall submit a mitigation report to the Engineer within 10 days of completion of the repair. This report shall state exactly what repair work was performed and quantify the success of the repairs relative to the submitted mitigation plan. The mitigation report shall be stamped and signed by an engineer that is licensed as a Civil Engineer by the State of California. The mitigation report shall show the State assigned contract number, bridge number, full name of the structure as shown on the contract plans, District-County-Route-Kilometer Post, and the Contractor (and Subcontractor if applicable) name on each sheet. The Engineer will be the sole judge as to whether a mitigation proposal is acceptable, the mitigation efforts are successful, and to whether additional repairs, removal and replacement, or construction of a supplemental foundation is required. ## ENGINEER'S ESTIMATE 01-314404 | Item
No. | Item
Code | Item Description | Unit of
Measure | Estimated Quantity | Unit Price | Item Total | |-------------|--------------|--|--------------------|--------------------|------------|------------| | 41 | 034558 | REMOVE TEMPORARY CRASH
CUSHION MODULE | EA | 28 | | | | 42 | 157550 | BRIDGE REMOVAL | LS | LUMP SUM | LUMP SUM | | | 43 | 160101 | CLEARING AND GRUBBING | LS | LUMP SUM | LUMP SUM | | | 44 | 190101 | ROADWAY EXCAVATION | M3 | 1880 | | | | 45 | 190110 | LEAD COMPLIANCE PLAN | LS | LUMP SUM | LUMP SUM | | | 46
(F) | 192003 | STRUCTURE EXCAVATION (BRIDGE) | M3 | 265 | | | | 47
(F) | 192008 | STRUCTURE EXCAVATION (TYPE A) | M3 | 3647 | | | | 48
(F) | 192023 | STRUCTURE EXCAVATION (TYPE H) | M3 | 68 | | | | 49
(F) | 049849 | STRUCTURE EXCAVATION
(TYPE AH) | M3 | 175 | | | | 50
(F) | 193003 | STRUCTURE BACKFILL (BRIDGE) | M3 | 84 | | | | 51
(S-F) | 034559 | GEOSYNTHETIC REINFORCED
EMBANKMENT | M2 | 800 | | | | 52
(S-F) | 034560 | IMPORTED BORROW
(GEOSYNTHETIC REINFORCED
EMBANKMENT) | M3 | 1090 | | | | 53 | 198001 | IMPORTED BORROW | M3 | 17 900 | | | | 54 | 198007 | IMPORTED MATERIAL (SHOULDER BACKING) | TONN | 570 | | | | 55
(S) | 034561 | WEED CONTROL MAT (FIBER) | M2 | 170 | | | | 56 | 200101 | IMPORTED TOPSOIL | M3 | 200 | | | | 57
(S) | 203001 | EROSION CONTROL (BLANKET) | M2 | 800 | | | | 58
(S) | 203003 | STRAW (EROSION CONTROL) | TONN | 3.1 | | | | 59
(S) | 203014 | FIBER (EROSION CONTROL) | KG | 1850 | | | | 60
(S) | 203024 | COMPOST (EROSION CONTROL) | M3 | 2.2 | | |